The triclinic cell parameters $[a=6.737(1), b=1.803(7), c=$ 10.444 (1) $\AA, \alpha=94.767$ (8), $\beta=108.30(1), \gamma=97.43(1)^{\circ}, V$ $=512.4(2) \AA^{3}$ (Nethaji et al., 1992)] could not be transformed to our primitive monoclinic cell using standard cell-reduction programs. The data were corrected for Lorentz and polarization effects. The structures were solved by direct methods using SHELXS86 (Sheldrick, 1985) and refined by full-matrix least squares (SHELX76; Sheldrick, 1976) with anisotropic displacement parameters for all non-H atoms.

The authors acknowledge support from the Australian Research Council, the Centre for Instrumental and Developmental Chemistry, Queensland University of Technology and The University of Queensland.

Lists of structure factors, anisotropic displacement parameters and H atom coordinates have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71807 (15 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HL1043]

References

Bryan, R. F. \& White, D. H. (1982a). Acta Cryst. B38, 1014-1016. Bryan, R. F. \& White, D. H. (1982b). Acta Cryst. B38, 1012-1014. Daly, J. J., Schonholzner, P., Behr, J.-P. \& Lehn, J. M. (1981). Helv. Chim. Acta, 64, 1444-1451.
Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Etter, M. C. \& Frankenbach, G. M. (1989). Chem. Mater. 1, 10-12.
Fair, C. K. \& Schlemper, E. O. (1977). Acta Cryst. B33, 13371341.

Frankenbach, G. M., Britton, D. \& Etter, M. C. (1991). Acta Cryst. C47, 553-555.
Gavrushenko, N., Carrell, H. L., Stallings, W. C. \& Glusker, J. P. (1977). Acta Cryst. B33, 3936-3939.

Lynch, D. E., Smith, G., Byriel, K. A. \& Kennard, C. H. L. (1992a). Z. Kristallogr. 200, 73-82.
Lynch, D. E., Smith, G., Byriel, K. A. \& Kennard, C. H. L. (1992b). J. Chem. Soc. Chem. Commun. pp. 300-301.
Moritani, Y. \& Kashino, S. (1991). Acta Cryst. C47, 461-463.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for Plotting Molecular and Crystal Structures. Univ. of Cambridge, England.
Nethaji, M., Pattabhi, V., Chhabra, N. \& Poonia, N. S. (1992). Acta Cryst. C48, 2207-2209.
Palmer, R. A. \& Ladd, M. F. C. (1977). J. Cryst. Mol. Struct. 7, 123-135.
Perez, S. (1976). Acta Cryst. B32, 2064-2070.
Perez, S. (1977). Acta Cryst. B33, 1083-1087.
Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
Stallings, W. C., Blount, J. F., Srere, P. A. \& Glusker, J. P. (1979). Arch. Biochem. Biophys. 193, 431-448.
Swaminathan, S., Vimala, T. M. \& Lessinger, L. (1975). Acta Cryst. A31, S-119.

Acta Cryst. (1994). C50, 1262-1265

$\mathbf{2}^{\prime}, 3^{\prime}$-Didehydro- $\mathbf{2}^{\prime}, \mathbf{3}^{\prime}$-dideoxy-5-hydroxymethyluridine

Umarani Pugazhenthi
Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 0W0

Louis T. J. Delbaere

Department of Biochemistry,
University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N OWO

Sashi V. P. Kumar, Allan L. Stuart and
Sagar V. Gupta

Department of Veterinary Physiological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 0W0
(Received 3 June 1993; accepted 26 November 1993)

Abstract

The furanose ring in $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{5}$ adopts the $\mathrm{O}\left(4^{\prime}\right)$ endo envelope conformation $\left({ }^{2} E\right)$ and the glycosidic torsion angle $\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{O}\left(4^{\prime}\right), \quad \chi, \quad$ is 245.2 (3) ${ }^{\circ}$. The pseudorotational parameters are $P=$ 102.7° and $\tau_{m}=5.2^{\circ}$. The $\mathrm{CH}_{2} \mathrm{OH}$ group on $\mathrm{C}\left(5^{\prime}\right)$ has the t conformation $\left[\gamma=179.2(2)^{\circ}\right]$.

Comment

A number of $2^{\prime}, 3^{\prime}$-dideoxyribonucleosides and $2^{\prime}, 3^{\prime}$ -didehydro- $2^{\prime}, 3^{\prime}$-dideoxyribonucleosides are potent inhibitors of the human immunodeficiency virus (HIV), the etiological agent of acquired immunodeficiency syndrome (AIDS). 3'-Azido-3'deoxythymidine (AZT) is used extensively for the treatment of AIDS and AIDS-Related Complex (Broder, Mitsuya, Yarchoan \& Pavlakis, 1990; De Clercq, 1991; Yarchoan, Pluda, Perno, Mitsuya \& Broder, 1991). 2', 3^{\prime}-Didehydro- $2^{\prime}, 3^{\prime}$-dideoxythymidine (D4T) has been reported to have a comparable potency to AZT against HIV (Baba et al., 1987; Lin, Schinazi \& Prusoff, 1987; Mansuri et al., 1989).

5-Hydroxymethyl-2'-deoxyuridine (HMdUrd) is a novel antimetabolite with broad-spectrum antiviral activity (Gupta et al., 1992; Shiau, Shinazi, Chen \& Prusoff, 1988) and low systemic toxicity (Meldrum, Gupta, Lowes \& Paterson, 1985). HMdUrd-5'monophosphate is a good inhibitor of thymidylate synthase (Kempf, Barfknecht, Shaffer, Osaki \&

Mertes, 1976), and HMdUrd-5'-triphosphate is a moderate inhibitor of HIV-1 reverse transcriptase (Tao, Johansson, Stening, Oberg \& Datema, 1989). 2',3'-Didehydro-2', 3'-dideoxy-5-hydroxymethyluridine (D4HMUrd), which has the structural features of both D4T and HMdUrd was synthesized as a potential anti-HIV agent. This investigation is part of a series of conformational studies in progress to determine the effect of changes in structure on antiviral activity (Gupta et al., 1987; Jia, Tourigny, Stuart, Delbaere \& Gupta, 1990ab; Gupta et al., 1992).

D4HMUrd
Owing to the fact that puckering reduces the steric interactions between adjacent substituents, fivemembered furanose rings are generally non-planar. Consequently, $\mathrm{C}\left(2^{\prime}\right)$-endo and $\mathrm{C}\left(3^{\prime}\right)$-endo puckering modes are preferred, as the non-bonding interactions between furanose-ring substituents are at a minimum (Saenger, 1984). In D4HMUrd the steric contacts are reduced because substituents at $\mathrm{C}\left(2^{\prime}\right)$ and $\mathrm{C}\left(3^{\prime}\right)$ are H atoms which are in the plane of the ring. The furanose ring adopts the $\mathrm{O}\left(4^{\prime}\right)$-endo envelope conformation $\left({ }^{0} E\right)$, and the displacement of $\mathrm{O}\left(4^{\prime}\right)$ from the mean plane through $\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right), \mathrm{C}\left(3^{\prime}\right)$ and $\mathrm{C}\left(4^{\prime}\right)$ is 0.071 (4) \AA. A pseudo-rotational analysis of the furanose-ring torsion angles in terms of the two degrees of freedom for ring puckering (Altona \& Sundaralingam, 1972) gives a phase angle $P=102.7^{\circ}$ and a puckering amplitude $\tau_{m}=5.2^{\circ}$, which indicates a high degree of planarity. The flattening of the furanose ring has also been reported for other modified nucleosides (Birnbaum, Giziewicz, Lin \& Prusoff, 1989; Harte, Starrett, Martin \& Mansuri, 1991). The glycosidic torsion angle $\mathrm{C}(2)-\mathrm{N}(1)$ -$\mathrm{C}\left(1^{\prime}\right)-\mathrm{O}\left(4^{\prime}\right), \chi$, has a value of $245.2(3)^{\circ}$, which is within the usual range for pyrimidine nucleosides that have the anti conformation. The $5^{\prime}-\mathrm{CH}_{2} \mathrm{OH}$ side chain exhibits the t conformation. The distance between the $\mathrm{N}(1)$ base and the $\mathrm{C}\left(5^{\prime}\right)$ exocyclic substituent is 4.13 (3) \AA, which is in agreement with the value expected for their equatorial orientation (Saenger, 1984). The pyrimidine ring is not completely planar; the atoms with the largest deviations from the mean plane are $C(4)[\Delta=0.026(4) \AA]$ and $\mathrm{C}(5)[\Delta=0.022(4) \AA]$.
The crystal structure is stabilized by two intermolecular hydrogen bonds per unit cell. The first is $\mathrm{N}(3)-\mathrm{H}(3) \cdots \mathrm{O}(4)\left(-\frac{1}{2}+x, \frac{3}{2}-y, 1-z\right)$. The distances $\mathrm{N}(3) \cdots \mathrm{O}(4)$ and $\mathrm{H}(3) \cdots \mathrm{O}(4)$ are 2.85 (3) and
$1.89 \AA$, respectively, and the angle $\mathrm{N}(3)-\mathrm{H}(3) \cdots \mathrm{O}(4)$ is 169.5°. The second is $\mathrm{O}(5,2)-\mathrm{H}(5,2) \cdots \mathrm{O}\left(5^{\prime}\right)(1-x$, $\frac{1}{2}+y, \frac{3}{2}-z$) with distances $\mathrm{O}(5,2) \cdots \mathrm{O}\left(5^{\prime}\right) 2.69(2)$, $\mathrm{H}(5,2) \cdots \mathrm{O}\left(5^{\prime}\right) \quad 1.76 \AA$ and angle $\mathrm{O}(5,2)$ $\mathrm{H}(5,2) \cdots \mathrm{O}\left(5^{\prime}\right)$ of 173.5°. The presence of an intramolecular hydrogen bond $\left[\mathrm{C}(6)-\mathrm{H}(6) \cdots \mathrm{O}\left(4^{\prime}\right)\right.$] has been reported for 5 -hydroxymethyl-2'-deoxyuridine (Birnbaum, Deslauriers, Lin, Shiau \& Prusoff, 1980). In D4HMUrd the corresponding distances are $\mathrm{C}(6) \cdots \mathrm{O}\left(4^{\prime}\right) 2.94$ (3) and $\mathrm{H}(6) \cdots \mathrm{O}\left(4^{\prime}\right) 2.76 \AA$, which are not considered to be significantly different from the sum of the van der Waals radii of the contributing atoms.

Fig. 1. Perspective ORTEPII view (Johnson, 1976) of the title compound with atomic numbering.

Experimental

The title compound (Kumar, Shi, Stuart, Qualtiere \& Gupta, 1994) was crystallized from methanol-diethyl ether as colourless plates.
Crystal data
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{5} \quad \mathrm{Cu} K \alpha$ radiation
$M_{r}=240.14$
Orthorhombic
$P 2_{1} 2_{1} 2_{1}$
$a=5.0862(5) \AA$
$b=8.0018$ (8) \AA
$c=26.067$ (3) \AA
$V=1060.9(2) \AA^{3}$
$Z=4$
$D_{x}=1.504 \mathrm{Mg} \mathrm{m}^{-3}$
$\lambda=1.5418 \AA$
Cell parameters from 25
reflections
$\theta=19-45^{\circ}$
$\mu=0.99 \mathrm{~mm}^{-1}$
$T=287 \mathrm{~K}$
Plates
$0.40 \times 0.25 \times 0.025 \mathrm{~mm}$ Colourless

Data collection

CAD-4 diffractometer $\omega / 2 \theta$ scans
Absorption correction:
none
$\theta_{\text {max }}=75^{\circ}$
$h=-2 \rightarrow 6$
$k=-6 \rightarrow 10$
$l=-17 \rightarrow 32$

1676 measured reflections
1315 independent reflections 1315 observed reflections $R_{\text {int }}=0.024$

Refinement

Refinement on F
$R=0.040$
$w R=0.039$
$S=3.489$
1315 reflections
156 parameters
H -atom parameters not refined
$w=1 / \sigma^{2}(F)$
$(\Delta / \sigma)_{\max }=0.196$

3 standard reflections frequency: 83.33 min intensity variation: 1%
$\Delta \rho_{\text {max }}=0.382 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.249 \mathrm{e}^{-3}$
Extinction correction: Larson (1970)
Extinction coefficient: 0.230
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} . \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
$\mathrm{N}(1)$	0.5950 (5)	0.3238 (3)	0.58047 (7)	0.0276 (6)
C(2)	0.5367 (6)	0.4167 (3)	0.53694 (9)	0.0335 (8)
O(2)	0.3651 (5)	0.3799 (3)	0.50687 (8)	0.0497 (8)
N(3)	0.6912 (6)	0.5586 (3)	0.53098 (8)	0.0350 (7)
C(4)	0.8879 (6)	0.6133 (3)	0.56303 (9)	0.0302 (8)
O(4)	1.0192 (5)	0.7377 (2)	0.55241 (7)	0.0435 (7)
C(5)	0.9230 (6)	0.5165 (3)	0.60933 (9)	0.0261 (7)
C(51)	1.1202 (6)	0.5760 (3)	0.6480 (1)	0.0326 (8)
O(52)	1.0800 (5)	0.5053 (2)	0.69723 (7)	0.0376 (6)
C(6)	0.7819 (6)	0.3767 (3)	0.61521 (9)	0.0267 (7)
$\mathrm{C}\left(1^{\prime}\right)$	0.4474 (6)	0.1692 (3)	0.59051 (9)	0.0326 (8)
$\mathrm{C}\left(2^{\prime}\right)$	0.6212 (7)	0.0217 (3)	0.6010 (1)	0.0400 (1)
C(3^{\prime})	0.5632 (7)	-0.0415 (3)	0.6462 (1)	0.0382 (9)
$\mathrm{C}\left(4^{\prime}\right)$	0.3510 (6)	0.0564 (3)	0.6715 (1)	0.0332 (8)
$\mathrm{O}\left(4^{\prime}\right)$	0.2965 (4)	0.1900 (2)	0.63625 (7)	0.0339 (6)
C(5^{\prime})	0.4206 (7)	0.1268 (4)	0.7231 (1)	0.0420 (9)
$\mathrm{O}\left(5^{\prime}\right)$	0.2099 (5)	0.2169 (3)	0.74569 (7)	0.0493 (8)

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{N}(1)-\mathrm{C}(2)$	$1.388(3)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.338(4)$
$\mathrm{N}(1)-\mathrm{C}(6)$	$1.379(3)$	$\mathrm{C}(51)-\mathrm{O}(52)$	$1.417(3)$
$\mathrm{N}(1)-\mathrm{C}\left(1^{\prime}\right)$	$1.471(4)$	$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	$1.500(4)$
$\mathrm{C}(2)-\mathrm{O}(2)$	$1.209(4)$	$\mathrm{C}\left(1^{\prime}\right)-\mathrm{O}\left(4^{\prime}\right)$	$1.428(3)$
$\mathrm{C}(2)-\mathrm{N}(3)$	$1.390(4)$	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	$1.316(4)$
$\mathrm{N}(3)-\mathrm{C}(4)$	$1.375(4)$	$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	$1.488(4)$
$\mathrm{C}(4)-\mathrm{O}(4)$	$1.230(3)$	$\mathrm{C}\left(4^{\prime}\right)-\mathrm{O}\left(4^{\prime}\right)$	$1.437(3)$
$\mathrm{C}(4-\mathrm{C}(5)$	$1.446(3)$	$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	$1.499(4)$
$\mathrm{C}(5)-\mathrm{C}(51)$	$1.500(4)$	$\mathrm{C}\left(5^{\prime}\right)-\mathrm{O}\left(5^{\prime}\right)$	$1.420(4)$
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(2)$	$121.3(2)$	$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	$123.6(3)$
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}\left(1^{\prime}\right)$	$119.5(2)$	$\mathrm{N}(3)-\mathrm{C}(2)-\mathrm{O}(2)$	$122.3(2)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}\left(1^{\prime}\right)$	$119.1(2)$	$\mathrm{O}(52)-\mathrm{C}(51)-\mathrm{C}(5)$	$112.7(2)$
$\mathrm{C}(4)-\mathrm{N}(3)-\mathrm{C}(2)$	$127.1(2)$	$\mathrm{N}(1)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{O}\left(4^{\prime}\right)$	$109.0(2)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$118.5(2)$	$\mathrm{N}(1)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	$113.2(3)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(51)$	$118.3(2)$	$\mathrm{O}\left(4^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	$104.8(2)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(51)$	$123.2(2)$	$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	$109.5(3)$
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{O}\left(4^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	$110.1(2)$	$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{O}\left(5^{\prime}\right)$	$112.6(3)$
$\mathrm{N}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$115.3(2)$	$\mathrm{O}\left(4^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	$109.8(2)$
$\mathrm{N}(3)-\mathrm{C}(4)-\mathrm{O}(4)$	$121.1(2)$	$\mathrm{O}\left(4^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	$104.4(2)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{O}(4)$	$123.7(3)$	$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	$115.0(3)$
$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$123.4(2)$	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	$110.9(3)$
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{N}(3)$	$114.1(2)$		

All non-H atoms were found on an E map and refined anisotropically. All H-atom positional parameters were calculated but not refined. Dispersion and extinction corrections
were applied. X-ray diffraction data were processed (including Bayesian treatment) and the structure was solved, by direct methods, using Xtal3.0 (Hall \& Stewart, 1990). All calculations were performed on a VAX 3100 computer at the University of Saskatchewan.

This research was funded by grants from the Medical Research Council of Canada to SVG and LTJD.

[^0]
References

Altona, C. \& Sundaralingam, M. (1972). J. Am. Chem. Soc. 94, 8205-8212.
Baba, M., Pauwels, R., Herdewijn, P., De Clercq, E., Desmyter, J. \& Vendeputte, M. (1987). Biochem. Biophys. Res. Commun. 142, 128-134.
Birnbaum, G. I., Deslauriers, G. I., Lin, T.-S., Shiau, G. T. \& Prusoff, W. H. (1980). J. Am. Chem. Soc. 102, 4236-4241.
Birnbaum, G. I., Giziewicz, J., Lin, T.-S. \& Prusoff, W. H. (1989). Nucleosides Nucleotides, 8, 1259-1269.
Broder, S., Mitsuya, H., Yarchoan, R. \& Pavlakis, G. N. (1990). Ann. Int. Med. 113, 604-612.
De Clercq, E. (1991). J. Acquir. Immun. Defic. Syndr. 4, 207-218.
Gupta, V. S., Aduma, P. J., Jia, Z., Stuart, A. L., Kumar, S. V. P., Tourigny, G. \& Delbaere, L. T. J. (1992). Antivir. Chem. Chemother. 3, 15-22.
Gupta, V. S., Stuart, A. L., Kumar, S. V. P., De Clercq, E., Qualtiere, J., Cozens, R. M., Lazdins, J. K. \& Qualtiere, L. F. (1992). Proceedings of the 5th International Conference on Antiviral Research, Vancouver, BC, Canada. Abstract 64.
Gupta, V. S., Tourigny, G., Stuart, A. L., De Clercq, E., Quail, J. W., Ekiel, I., El-Kabbani, O. A. L. \& Delbaere, L. T. J. (1987). Antivir. Res. 7, 69-77.
Hall, S. R. \& Stewart, J. M. (1990). Editors. Xtal3.0 Reference Manual. Univs. of Western Australia, Australia, and Maryland, USA.
Harte, W. E. Jr, Starrett, J. Jr, Martin, J. C. \& Mansuri, M. M. (1991). Biochem. Biophys. Res. Commun. 175, 298-304.

Jia, Z., Tourigny, G., Stuart, A. L., Delbaere, L. T. J. \& Gupta, V. S. (1990a). Acta Cryst. C46, 2182-2185.

Jia, Z., Tourigny, G., Stuart, A. L., Delbaere, L. T. J. \& Gupta, V. S. (1990b). Can. J. Chem. 68, 836-841.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kempf, A., Barfknecht, R. L., Shaffer, P. J., Osaki, S. \& Mertes, M. P. (1976). J. Med. Chem. 19, 903-908.

Kumar, S. V. P., Shi, R., Stuart, A. L., Qualtiere, L. F. \& Gupta, V. S. (1994). J. Med. Chem. In preparation.

Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.
Lin, T.-S., Schinazi, R. F. \& Prusoff, W. H. (1987). Biochem. Pharmacol. 36, 2713-2718.
Mansuri, M. M., Starrett, J. E. Jr, Ghazzouli, I., Hitchcock, M. J. M., Sterzycki, R. Z., Brankovan, V., Lin, T.-S., August, E. M., Prusoff, W. H., Sommadossi, J.-P. \& Martin, J. C. (1989). J. Med. Chem. 32, 461-466.

Meldrum, J. B., Gupta, V. S., Lowes, N. R. \& Paterson, A. R. P. (1985). Toxicol. Appl. Pharmacol. 79, 423-435.

Saenger, W. (1984). Principles of Nucleic Acids Structure, pp. 57-59. New York: Springer Verlag.
Shiau, G. T., Schinazi, R. F., Chen, M. S. \& Prusoff, W. H. (1980). J. Med. Chem. 23, 127-133.

Tao, P. Z., Johansson, N. G., Stening, G., Oberg, B. \& Datema, R. (1989). Antivir. Res. 12, 269-278.

Yarchoan, R., Pluda, J. M., Perno, C. F., Mitsuya, H. \& Broder, S. (1991). Blood, 78, 859-884.

Acta Cryst. (1994). C50, 1265-1267

Thiamin Acetate, $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{OS}^{+} . \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{\mathbf{2}}^{-}$

José S. Casas,* Alfonso Castiñeiras, María D. Couce, José Sordo and José M. Varela
Departamento de Quimica Inorgánica, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia, Spain

(Received 26 April 1993; accepted 8 November 1993)

Abstract

In thiamin acetate crystals, the thiamin cation $\{3-[(4-$ amino-2-methyl-5-pyrimidinyl)methyl]-5-(2-hydroxy-ethyl)-4-methylthiazolium) adopts the usual F conformation, with torsion angles $\mathrm{C} 5^{\prime}-\mathrm{C} 3,5^{\prime}-\mathrm{N} 3-\mathrm{C} 2$ and $\mathrm{N} 3-\mathrm{C} 3,5^{\prime}-\mathrm{C} 5^{\prime}-\mathrm{C} 4^{\prime}$ (between the pyridinyl and thiazolium moieties) of $5.6(7)$ and $-83.5(6)^{\circ}$, respectively. Hydrogen bonds involving the $\mathrm{O} 5 \gamma-\mathrm{H}$ hydroxyl and $\mathrm{N} 4 \alpha^{\prime}-\mathrm{H}_{2}$ amine groups and the Nl^{\prime} and $\mathrm{N} 3^{\prime}$ pyrimidine atoms interconnect the thiamin cations. The acetate anions are hydrogen bonded to the $\mathrm{N} 4 \alpha^{\prime}-\mathrm{H}_{2}$ group and probably also to the

 $\mathrm{C} 2-\mathrm{H}$ group of the thiazole ring.
Comment

Thiamin (vitamin $\mathrm{B}_{1}, \mathrm{Th}^{+}$) is an essential dietary component for man and other animals. Its pyrophosphoric acid ester is a coenzyme for several enzyme systems catalysing the decarboxylation of α-keto acids and the transfer of acyl or aldehyde groups (Krampitz, 1969).

Structural studies of Th^{+}derivatives in the solid state began in 1962, when the crystal structure of thiamin chloride hydrochloride monohydrate ($\mathrm{ThCl} . \mathrm{HCl} . \mathrm{H}_{2} \mathrm{O}$) was reported (Kraut \& Reed, 1962). Since then, several thiamin derivatives have been studied by X-ray diffraction, including both saline compounds containing Th^{+}or HTh^{2+} cations and true complexes where a metallic centre is directly bonded to thiamin, usually, though not always,
through a pyrimidine N atom (Hu, 1991; Aoki, Yamazaki \& Adeyemo, 1991; Jin, Liu, Wei \& Wang, 1990; Louloudi, Hadjiliadis, Feng, Sukumar \& Bau, 1990).

In this paper we report the crystal structure of thiamin acetate, $\mathrm{ThOOCCH}_{3}$. As far as we know, only one other thiamin salt with an organic anion (thiamin picrolonate; Shin, Pletcher, Blank \& Sax, 1977) has been characterized structurally.

Fig. 1 shows an ORTEP (Johnson, 1971, and supplementary instructions) diagram of the compound. In general, the values for the pyrimidine and thiazolium rings are in good agreement with those found in other unsubstituted Nl^{\prime}-deprotonated thiamin derivatives (Pletcher, Sax, Sengupta, Chu \& Yoo, 1972; Shin, Pletcher, Blank \& Sax, 1977), especially with those of thiamin picrolonate dihydrate. Differences from this compound [other than that concerning the C4-C5 distance, which seems likely to have been misprinted in the paper by Shin, Pletcher, Blank \& Sax (1977)] arise in the $\mathrm{N} 3^{\prime}-\mathrm{C} 4^{\prime}$ and $\mathrm{C} 4^{\prime}-\mathrm{N} 4 \alpha^{\prime}$ distances (respectively shorter and longer in the acetate) and the angles between the pyrimidine ring and its 4^{\prime} - and 5^{\prime}-substitutents ($\mathrm{C} 4^{\prime}-\mathrm{C} 5^{\prime}-\mathrm{C} 3,5^{\prime}, \quad \mathrm{C} 6^{\prime}-\mathrm{C} 5^{\prime}-\mathrm{C} 3,5^{\prime}$, $\mathrm{N} 3^{\prime}-\mathrm{C} 4^{\prime}-\mathrm{N} 4 \alpha^{\prime}$ and $\mathrm{C} 5^{\prime}-\mathrm{C} 4^{\prime}-\mathrm{N} 4 \alpha^{\prime}$). These differences may be due to the difference between the hydrogen-bond patterns observed in the two compounds (see below). In $\mathrm{ThOOCCH}_{3}$, the thiazolium

Fig. 1. ORTEPII (Johnson, 1971, and supplementary instructions) drawing of the compound.

Acta Crystallographica Section C ISSN 0108-2701 ©1994

[^0]: Lists of structure factors, anisotropic displacement parameters and H -atom coordinates have been deposited with the IUCr (Reference: CD1065). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

